Технологическая автоматизация

Методы цифровых технологий

Микроконтроллер фирмы ATMEL семейства megaAVR

Функциональная схема представлена на рисунке 5.2.

Рисунок 5.2 - Функциональная схема

содержит следующие элементы: 64 кбайт внутрисистемно программируемой флеш-памяти с поддержкой чтения во время записи, 2 кбайт ЭСППЗУ, 4 кбайт статического ОЗУ, 53 линии универсального ввода-вывода, 32 универсальных рабочих регистра, счетчик реального времени (RTC), четыре гибких таймера-счетчика с режимами сравнения и ШИМ, 2 УСАПП, двухпроводной последовательный интерфейс ориентированный на передачу байт, 8-канальный 10-разрядный АЦП с опциональным дифференциальным входом с программируемым коэффициентом усиления, программируемый сторожевой таймер с внутренним генератором, последовательный порт SPI, испытательный интерфейс JTAG совместимый со стандартом IEEE 1149.1, который также используется для доступа к встроенной системе отладке и для программирования.

Ядро центрального процессорного устройства AVR.

Рисунок 5.3 - Функциональная схема архитектуры AVR

В целях достижения максимальной производительности и параллелелизма у AVR-микроконтроллеров используется Гарвардская архитектура с раздельными памятью и шинами программ и данных. Команды в памяти программ выполняются с одноуровневой конвейеризацией. В процессе выполнения одной инструкции следующая предварительно считывается из памяти программ. Данная концепция позволяет выполнять одну инструкцию за один машинный цикл. Память программ представляет собой внутрисистемно программируемую флэш-память.

Регистровый файл с быстрым доступом содержит 32 8-разрядных рабочих регистров общего назначения с однотактовым циклом доступа. Благодаря этому достигнута однотактность работы арифметико-логического устройства (АЛУ). При обычной работе АЛУ сначала из регистрового файла загружается два операнда, затем выполняется операция, а после результат отправляется обратно в регистровый файл и все это происходит за один машинный цикл.

регистров из 32 могут использоваться как три 16-разрядные регистра косвенного адреса для эффективной адресации в пределах памяти данных. Один из этих указателей адреса может также использоваться как указатель адреса для доступа к таблице преобразования во флэш-памяти программ. Данные 16-разр. регистры называются X-регистр, Y-регистр и Z-регистр.

АЛУ поддерживает арифметические и логические операции между регистрами, а также между константой и регистром. Кроме того, АЛУ поддерживает действия с одним регистром. После выполнения арифметической операции регистр статуса обновляется для отображения результата выполнения операции.

При генерации прерывания и вызове подпрограмм адрес возврата из программного счетчика записывается в стек. Стек эффективно распределен в статическом ОЗУ памяти данных и, следовательно, размер стека ограничен общим размером статического ОЗУ и используемым его объемом. В любой программе сразу после сброса должна быть выполнена инициализация указателя стека (SP) (то есть перед выполнением процедур обработки прерываний или вызовом подпрограмм). Указатель стека SP доступен на чтение и запись в пространстве ввода-вывода. Доступ к статическому ОЗУ данных может быть легко осуществлен через 5 различных режимов адресации архитектуры AVR.

Гибкий модуль прерываний содержит свои управляющие регистры в пространстве ввода-вывода и имеет дополнительный бит общего разрешения работы системы прерываний в регистре статуса. У всех прерываний имеется свой вектор прерывания в соответствии с таблицей векторов прерываний. Прерывания имеют приоритет в соответствии с позицией их вектора. Прерывания с меньшим адресом прерывания имеют более высокий приоритет.

Пространство памяти ввода-вывода содержит 64 адреса с непосредственной адресацией или может адресоваться как память данных, следующая за регистрами по адресам $20 - $5F.

Порты ввода-вывода.

Все порты ввода-вывода (ПВВ) AVR-микроконтроллеров работают по принципу чтение-модификация-запись при использовании их в качестве портов универсального ввода-вывода. Это означает, что изменение направления ввода-вывода одной линии порта командами SBI и CBI будет происходит без ложных изменений направления ввода-вывода других линий порта. Данное распространяется также и на изменение логического уровня (если линия порта настроена на вывод) или на включение/отключение подтягивающих резисторов (если линия настроена на ввод). Каждый выходной буфер имеет симметричную характеристику управления с высоким втекающим и вытекающим выходными токами. Выходной драйвер обладает нагрузочной способностью, которая позволяет непосредственно управлять

светодиодными индикаторами. Ко всем линиям портов может быть подключен индивидуальный выборочный подтягивающий к плюсу питания резистор, сопротивление которого не зависит от напряжения питания. На всех линиях ПВВ установлены защитные диоды, которые подключены к VCC и Общему (GND), как показано на рисунке 5.4. Перейти на страницу: 1 2 3

Другие статьи по теме:

Комплексная система защиты информации на предприятии Прохождение производственной практики имеет большое значение в процессе подготовки будущих специалистов. Необходимость ее для студента заключается в том, что это отличная ...

Антенно-фидерные устройства «Хорошая антенна - лучший усилитель высокой частоты» Радиосвязь между двумя пунктами, расположенными на поверхности Земли осуществляется пространственными и поверхностными волнами. ...

Диспетчерская централизация на базе комплекса технических средств Неман Диспетчерская централизация (ДЦ) - это комплекс устройств железнодорожной автоматики и телемеханики, состоящий из автоблокировки на перегонах, электрической централизации стрелок ...